Part Number Hot Search : 
EL5164IS TC426EOA TM128 1N4753A A24C1 1N4736 8EN1YMBK SA627
Product Description
Full Text Search
 

To Download IRFI4410ZPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? IRFI4410ZPBF v dss 100v r ds(on) typ. 7.9m ?? i d 43a r ds(on) max. 9.3m ?? 1 2017-04-27 ? absolute maximum ratings symbol parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 43 a i d @ t c = 100c continuous drain current, v gs @ 10v 30 i dm pulsed drain current ? 170 p d @t c = 25c maximum power dissipation 47 w linear derating factor 0.3 w/c v gs gate-to-source voltage 30 v t j operating junction and -55 to + 175 ? t stg storage temperature range c ? soldering temperature, for 10 seconds (1.6mm from case) 300 ? mounting torque, 6-32 or m3 screw 10 lbf?in (1.1n?m) ? e as single pulse avalanche energy (thermally limited) ? 310 mj g d s gate drain source applications ? high efficiency synchronous rectification in smps ? uninterruptible power supply ? high speed power switching ? hard switched and high frequency circuits hexfet ? power mosfet to-220 full-pak base part number package type standard pack orderable part number form quantity IRFI4410ZPBF to-220 full-pak tube 50 IRFI4410ZPBF thermal resistance ? symbol parameter typ. max. units r ? jc junction-to-case ? ??? 3.2 r ? ja junction-to-ambient (pcb mount) ? ??? 65 c/w g d s benefits ? improved gate, avalanche and dynamic dv/dt ruggedness ? fully characterized capacitance and avalanche soa ? enhanced body diode dv/dt and di/dt capability ? lead-free
? IRFI4410ZPBF 2 2017-04-27 notes: ? ? repetitive rati ng; pulse width limited by max. junction temperature. (see fig. 11) ? limited by t jmax , starting t j = 25c, l = 0.91mh, r g = 25 ? , i as = 26a, v gs =10v. part not recommended for use above this value. ? pulse width ?? 400s; duty cycle ? 2%. ?? r ? is measured at t j approximately 90c. ? c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . ? c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss . electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 100 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 95 ??? mv/c reference to 25c, i d = 5ma ? r ds(on) static drain-to-source on-resistance ??? 7.9 9.3 m ??? v gs = 10v, i d = 26a v gs(th) gate threshold voltage 2.0 ??? 4.0 v v ds = v gs , i d = 150a i dss drain-to-source leakage current ??? ??? 20 a v ds = 100 v, v gs = 0v ??? ??? 250 v ds = 100v,v gs = 0v,t j =125c gate-to-source forward leakage ??? ??? 100 na ? v gs = 20v gate-to-source reverse leakage ??? ??? -100 v gs = -20v r g internal gate resistance ??? 0.9 ??? ? i gss ? source-drain ratings and characteristics parameter min. typ. max. units conditions i s continuous source current ??? ??? 43 a mosfet symbol (body diode) showing the i sm pulsed source current ??? ??? 170 integral reverse (body diode) ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.3 v t j = 25c,i s = 26a,v gs = 0v ?? t rr reverse recovery time ??? 47 71 ns t j = 25c ??? 54 81 t j = 125c q rr reverse recovery charge ??? 110 160 nc t j = 25c ? ??? 140 210 t j = 125c ? i rrm reverse recovery current ??? 2.5 ??? a ? t j = 25c ? t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) dynamic @ t j = 25c (unless otherwise specified) gfs forward trans conductance 80 ??? ??? s v ds = 50v, i d = 26a q g total gate charge ??? 81 110 ? i d = 26a q gs gate-to-source charge ??? 18 ??? nc ? v ds = 50v q gd gate-to-drain charge ??? 23 ??? ? v gs = 10v ? t d(on) turn-on delay time ??? 15 ??? ns v dd = 65v t r rise time ??? 27 ??? i d = 26a t d(off) turn-off delay time ??? 43 ??? r g = 2.7 ?? t f fall time ??? 30 ??? v gs = 10v ? c iss input capacitance ??? 4910 ??? pf ? v gs = 0v c oss output capacitance ??? 330 ??? v ds = 50v c rss reverse transfer capacitance ??? 150 ??? ? = 1.0mhz c oss eff. (er) effective output capacitance (energy related) ??? 420 ??? v gs =0v,v ds = 0v to 80v ? see fig. 11 c oss eff. (tr) effective output capacitance (time related) ??? 680 ??? v gs = 0v, v ds = 0v to 80v ? v r = 85v i f = 26a di/dt= 100a/s ?
? IRFI4410ZPBF 3 2017-04-27 fig. 3 typical transfer characteristics fig. 4 normalized on-resistance vs. temperature fig. 1 typical output characteristics fig 5. typical capacitance vs. drain-to-source voltage fig 6. typical gate charge vs. gate-to-source voltage fig. 2 typical output characteristics 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v ? 60s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v ? 60s pulse width tj = 175c 4.5v 2 3 4 5 6 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 50v ? 60s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 26a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 0 2000 4000 6000 8000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 20406080100120 q g total gate charge (nc) 0 4 8 12 16 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v v ds = 50v v ds = 20v i d = 26a
? IRFI4410ZPBF 4 2017-04-27 ? fig 8. maximum safe operating area fig. 7. typical source-to-drain diode forward voltage fig 10. drain-to-source breakdown voltage fig 12. maximum avalanche energy vs. drain current fig. 11. typical c oss stored energy 0.0 0.5 1.0 1.5 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0.1 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc 25 50 75 100 125 150 175 t c , casetemperature (c) 0 10 20 30 40 50 i d , d r a i n c u r r e n t ( a ) fig. 9. maximum drain current vs. case temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 100 105 110 115 120 125 130 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 5ma 0 20 40 60 80 100 v ds, drain-to-source voltage (v) 0.0 0.5 1.0 1.5 2.0 e n e r g y ( j ) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 200 400 600 800 1000 1200 1400 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 8.6a 14a bottom 26a
? IRFI4410ZPBF 5 2017-04-27 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. single avalanche event: puls e current vs. pulse width notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.infineon.com) 1.avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 fa ctor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = tav f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) = ? t/ z thjc i av = 2 ? t/ [1.3bvz th ] e as (ar) = p d (ave) t av ?? fig 15. maximum avalanche energy vs. temperature 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) ??? (sec) 0.117574 0.000176 1.337531 0.7389 1.260992 0.103059 0.508931 0.008379 ? j ? j ? 1 ? 1 ? 2 ? 2 ? 3 ? 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i ? ri ci= ? i ? ri ? ? c ? 4 ? 4 r 4 r 4 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 1.0e+01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ?? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 80 160 240 320 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = 26a
? IRFI4410ZPBF 6 2017-04-27 fig 20. typical stored charge vs. dif/dt fig 19. typical stored charge vs. dif/dt fig 18. typical recovery current vs. dif/dt fig 16. threshold voltage vs. temperature -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0a i d = 1.0ma i d = 250a i d = 150a 100 200 300 400 500 600 700 di f /dt (a/s) 0 2 4 6 8 10 12 14 16 i r r ( a ) i f = 17a v r = 85v t j = 25c t j = 125c 100 200 300 400 500 600 700 di f /dt (a/s) 0 2 4 6 8 10 12 14 16 i r r ( a ) i f = 26a v r = 85v t j = 25c t j = 125c fig 17. typical recovery current vs. dif/dt 100 200 300 400 500 600 700 di f /dt (a/s) 0 50 100 150 200 250 300 350 q r r ( n c ) i f = 17a v r = 85v t j = 25c t j = 125c 100 200 300 400 500 600 700 di f /dt (a/s) 0 50 100 150 200 250 300 350 q r r ( n c ) i f = 26a v r = 85v t j = 25c t j = 125c
? IRFI4410ZPBF 7 2017-04-27 fig 21. peak diode recovery dv/dt test circuit for n-channel hexfet ? power mosfets fig 22a. unclamped inductive test circuit fig 23a. switching time test circuit fig 22b. unclamped inductive waveforms fig 23b. switching time waveforms fig 24b. gate charge waveform r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v t p v (br)dss i as fig 24a. gate charge test circuit vds vgs id vgs(th) qgs1 qgs2 qgd qgodr
? IRFI4410ZPBF 8 2017-04-27 ? to-220 full-pak package outline (dimensions are shown in millimeters (inches)) to-220 full-pak part marking information to-220ab full-pak packages are not reco mmended for surface mount application. note: for the most current drawing please refer to website at http://www.irf.com/package/
? IRFI4410ZPBF 9 2017-04-27 ? revision history date comments 04/27/2017 ?? changed datasheet with infineon logo - all pages. ?? corrected package outline on page 8. ?? corrected fig 19 & 20 ?y axis title from ?a? to ?nc? on page 6. ?? added disclaimer on last page. qualification information? qualification level ? industrial (per jedec jesd47f) ? to-220 full-pak n/a rohs compliant yes moisture sensitivity level ? ? applicable version of jedec standar d at the time of product release. trademarks of infineon technologies ag hvic?, ipm?, pfc?, au-convertir?, aurix?, c166?, canpak?, ci pos?, cipurse?, cooldp?, coolgan?, coolir?, coolmos?, coolset?, coolsic?, dave?, di-pol?, directfet?, drbl ade?, easypim?, econobridge?, econodual?, ec onopack?, econopim?, eicedriver?, eupec?, fcos?, ganpowir?, hexfet?, hitfet?, hybridpack?, imotion?, iram?, isofac e?, isopack?, ledrivir?, litix?, mipaq?, modstack?, my-d?, nov alithic?, optiga?, optimos?, origa?, powiraudio?, powi rstage?, primepack?, primestack?, profet?, pro-sil?, rasic?, real3?, smartlewis?, s olid flash?, spoc?, strongirfet?, supirbuck?, tempfe t?, trenchstop?, tricore?, uhvic?, xhp?, xmc? trademarks updated november 2015 other trademarks all referenced product or service names and trademarks are the property of their respective owners. edition 2016-04-19 published by infineon technologies ag 81726 munich, germany ? 2016 infineon technologies ag. all rights reserved. do you have a question about this document? email: erratum@infineon.com document reference ifx1 important notice the information given in th is document shall in no event be regarded as a guarantee of conditions or characteristics (?bescha ff enheitsgarantie?) . with respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, infineon technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. in addition, any information given in this document is subject to customer?s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer?s products and any use of the product of infineon technologies in customer?s applications. the data contained in th is document is exclusively intended for technically trained sta ff . it is the responsibility of customer?s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. for further information on the product, technology, delivery terms and conditions and prices please contact your nearest infineon technologies off ice ( www.infineon.com ). please note that this product is not qualified according to the aec q100 or aec q101 documents of the automotive electronics council. warnings due to technical requirements products may contain dangerous substanc es. for information on the types in question please contact your nearest infineon technologies o ff ice. except as otherwise explicitly approved by infineon technologies in a written document signed by authorized representatives of infineon technologies, infineon technologies? products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.


▲Up To Search▲   

 
Price & Availability of IRFI4410ZPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X